Spatial Interpolation for Robotic Sampling: Uncertainty with Two Models of Variance

نویسندگان

  • Young-Ho Kim
  • Dylan A. Shell
  • Colin Ho
  • Srikanth Saripalli
چکیده

Several important forms of robotic environmental monitoring involve estimating a spatial field from comparatively few measurements. A number of researchers use linear least squares estimation techniques, frequently either the geostatistical Kriging framework or a Gaussian Process regression formulation, that provide estimates of quantities of interest at unmeasured locations. These methods enable selection of sample locations (e.g., for adaptive sampling) by quantifying uncertainty across the scalar field. This paper assesses the role of pose uncertainty and measurement error on variance of the estimated spatial field. We do this through a systematic empirical comparison of scalar fields reconstructed from measurements taken with our robot using multiple imperfect sensors and actively estimating its pose. We implement and compare two models of variance: Kriging Variance (KV) and Interpolation Variance (IV), illustrating that the latter —which has not been used in a robotics context before— has several advantages when used for online planning of sampling tasks. Using two separate experimental scenarios, we assess the estimated variance in scalar fields constructed from measurements taken by robots. Physical robots sampling within our office building suggest that using IV to select sampling sites gathers more data for a given time window (45% more than KV), travels a shorter distance to collect the same number of samples (25% less than KV), and has a promising speed-up with multiple robots. Water quality data from an Autonomous Underwater Vehicle survey of Lake Pleasant, AZ. also show that IV produces better qualities for given a distance and time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps

The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...

متن کامل

Assessment of geostatistical and interpolation methods for mapping forest dieback intensity in Zagros forests

During recent years, oak decline has been widely spread across Brant’s oak (Quercus Brantii Lindl.) stands in the Zagros Mountains, Western Iran, which caused large-area forest dieback in several sites. Mapping the intensity and spatial distribution of forest dieback is essential for developing management and control strategies. This study evaluated a range of geostatistical and interpolation m...

متن کامل

Bayesian Network Designs for Fields with Unknown Variance Function

We consider the problem of designing a network of sampling locations in a spatial domain that will be used to interpolate a spatial field. We focus on the random field model in which variance is given by an unknown step function of the locations. We express this uncertainty through an appropriate class of prior distributions and introduce a Bayesian sequential sampling algorithm. At each step, ...

متن کامل

An Estimate of the Sampling Error Variance of the Gridded GHCN Monthly Surface Air Temperature Data

The sampling error variances of the 5° 5° Global Historical Climatological Network (GHCN) monthly surface air temperature data are estimated from January 1851 to December 2001. For each GHCN grid box and for each month in the above time interval, an error variance is computed. The authors’ error estimation is determined by two parameters: the spatial variance and a correlation factor determined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012